Gutachten – Qualitätsregulierung
Berücksichtigung und Verwertung von Netzzuverlässigkeit und Versorgungsqualität in Anreizregulierungsverfahren, mögliche methodische Ansätze, empirische Datenermittlung und Erfahrung in der internationalen Anwendung

Präsentation vor dem Konsultationskreis

Dr. Brian Wharmby, Dr. Jens Büchner
E-Bridge Consulting GmbH
Bonn, 21.03.2006
Contents

- Introduction and Scope of the Study
- Cornerstones of Quality Regulation System
- International Experience
- Quality of the German Energy Industries
- Recommendation of a Quality Regulation System
- Implementation Process
- Summary and Conclusions
1. Introduction and Scope of the Study

Background

- The New Energy Law provides that the Bundesnetzagentur (BNetzA) shall prepare a report on the cornerstones of an incentive regulation system by June 30th, 2006.

- The Energy Law provides with respect to quality regulation:
 - Efficiency targets must consider the quality of supply and respective quality targets
 - Quality targets must be based on reliability criteria, taking into account structural differences between the network operators
 - Violation of quality targets may lead to reduced network tariffs
 - The Ministry of Economics and Technology (former Ministry of Economics and Labour) may develop regulations with respect to
 - Setting minimum and maximum efficiency and quality targets, including the means to enforce these targets
 - Referential treatment of investments that serve the improvement of the security of supply
 - The Ministry of Economics and Technology shall monitor the security of supply with special consideration of the long-term adequacy of the system
Introduction and Scope of the Study

- Regulatory issues
 - How to define quality of supply?
 - How to monitor and regulate quality of supply?
 - How to get started in the absence of quality data and tested regulatory mechanisms?
Cornerstones of Quality Regulation System
Different Dimensions of Quality

- Quality of network operators are usually divided into four dimensions:
 - Safety: “The ability to avoid damage to property or persons”
 - Reliability: “The ability of a system to transport energy to and from its connected network customers”
 - Product Quality: “The technical quality of electricity and gas”
 - Service Quality: “The quality of the interactions between network operators and their clients”
Cornerstones of Quality Regulation System

- Are current quality standards adequate?
 - No apparent concerns that today’s safety standards and product quality are not sufficient (gas and electricity)
 - Average reliability in electricity seems to belong to the best in Europe
 - Reliability levels in gas are not well known, neither in Germany nor internationally
 - Service quality in Germany is unknown
The common regulatory structure

- Investment and Maintenance Decisions
- Execution of works
- Network (System)
- Network Operator
- Financial Incentives
- Provisions for a QMS
- Sanctions / Penalties
- Provisions for collection of data
- Costs
- Quality Criteria
Cornerstones of Quality Regulation System

- Common criteria for average reliability
 - Interruption > 3 minutes
 - SAIFI – System Average Interruption Frequency Index
 - Cumulated interruption frequency per connected customer
 \[
 SAIFI = \frac{\text{Summe aller Kundenunterbrechungen}}{\text{Summe aller angeschlossenen Kunden}}
 \]
 - CAIDI – Customer Average Interruption Duration Index
 - Average restoration time per interrupted customer
 \[
 CAIDI = \frac{\text{Kumulierte Dauer der Kundenunterbrechungen}}{\text{Summe aller Kundenunterbrechungen}}
 \]
 - SAIDI – System Average Interruption Duration Index
 - Cumulated interruption duration per connected customer
 \[
 SAIDI = \frac{\text{Kumulierte Dauer aller Kundenunterbrechungen}}{\text{Summe aller versorgten Kunden}}
 \]
 - ENS – Energy Not Supplied
 - Cumulated energy not supplied
Cornerstones of Quality Regulation System

- Scope of quality regulation
 - Identify any potential dissatisfaction of clients with current quality levels
 - Ensure a proper efficiency analysis, as common benchmark approaches do not consider quality of supply
 - Protect customers from over-extensive cost savings
 - Protect vulnerable customers from degrading quality
 - Provide incentives to achieve a socio-economically justified quality level
International Experience
Electricity - UK

- Detailed system developed since 1990 including
 - Technical regulation (Grid Code and Distribution Code)
 - Requirements for audited quality data
 - Publication of reported data
 - Protection of worst-served clients
 - Incentive for average quality performance

- Incentive System
 - Based on Average reliability
 - Price of Quality, $\phi^{SAIDI} = 0,05 \rightarrow 0,5 \text{ €/min}, \phi^{SAIFI} = 4,5 \rightarrow 39 \text{ €/interruptions}$
 - Up to 3% of revenues at risk

- Guaranteed Standards for
 - Service Quality
 - Reliability (worst served customers)
 - Standards for normal and exceptional conditions

- Reporting and Auditing
 - Detailed reporting arrangements
 - Auditing performed annually
International Experience
Electricity - Netherlands

- Detailed regulation system comprising of
 - Technical regulation (Grid Code and Distribution Code)
 - Requirements for audited quality data
 - Publication of reported data
 - Protection of vulnerable clients
 - Incentive for average quality performance

- Incentive System
 - Average reliability
 - Price of Quality, \(\varphi^{\text{SAIDI}} = 0.20-0.25 \text{ €/min} \) (to be determined in 2006)
 - Up to 5% of revenues at risk

- Guaranteed Standards for Reliability (worst served customers)
 - Restoration time (more than 4 hours)
 - Household customers: € 35
 - Small commercial customers: € 910

- Reporting and Auditing
 - Detailed reporting arrangements
 - Auditing performed annually
International Experience
Electricity - Norway

- Incentive System
 - Energy Not Supplied (ENS)
 - 2001-06
 - Revenue cap increased or decreased depending on actual and expected cost of ENS
 - 2003-06 ENS cost €1,0-12,4/kWh
 - 2007-11 proposal
 - Incentive based revenue cap
 - Yearly efficiency calculations (DEA model)
 - Cost of short-term (<3min) outages included from 2008
 - Direct compensation for outages over 12hrs

- Reporting and Auditing
 - Detailed reporting arrangements to NVE
 - ENS differentiated between 27 customer groups
International Experience
Gas - UK

- Gas industry regulation driven by safety considerations
 - Separate safety regulator (HSE)
 - Principal concerns are
 - Gas escapes
 - Explosion
 - Fire
 - Carbon monoxide poisoning
- Regulation of quality of service is much less sophisticated than for electricity
- Limited data reporting
 - Number and duration of interruptions
 - Mains replacement performance
 - Environmental outputs
- Guaranteed and Overall Standards introduced recently
- No immediate prospect of linking quality to revenue through incentives
International Experience
Gas - Netherlands

- DTe considerations of gas quality regulation
 - Safety
 - Quality (security) of transportation
 - Gas quality
 - composition and pressure of the transported gas,
 - Service quality
 - Environmental quality

- Reporting requirements
 - Number of accidents
 - Average duration of the time needed to cancel the safety risk
 - Number of leakages

- Possible future use of incentive regulation with minimum performance standards

- Improvement to legal framework for gas network design, construction, operation and maintenance required
 - Regulatory responsibility for safety compliance unclear
International Experience - Summary

- **Electricity**
 - Several examples of sophisticated incentive regulation of quality
 - Average system performance drivers
 - SAIFI, CAIDI, ENS
 - Limited revenue exposure
 - Less than +/-5%
 - Often with extra protection for customers who get poor service
 - Penalty payments
 - Key requirement is good data
 - Detailed reporting protocols
 - Quality Management Systems and Auditing

- **Gas**
 - Safety is the over-riding consideration
 - Some monitoring introduced
 - Very few penalties and no financial quality incentive schemes
Status Quo of Quality Regulation in Germany

- The “Safety” and “Product Quality” of electricity and gas is ruled by special standards and rules. There is no immediate need to expand on these rules.

- General planning and operational standards exist only for 110kV-networks and above in form of an N-1 criteria. We do not see any reasons for modifying these planning rules.

- The “Reliability” of electricity is monitored since many years with the focus on components (since 2004 customer focussed). The existing data base from 2004 onward may serve as a basis to conduct initial trend analysis for medium and high voltage networks.

- The “Reliability” of the gas network is hardly monitored. Focus was always put on gas accidents. We suggest to expand the data base to include reliability data as well.

- The role of economic and safety regulators in approval of modification of these standards and rules should be further clarified and confirmed by respective regulations.
Recommendations
Reliability (Electricity)

- Overview

 - Two focus areas of quality regulation
 - Incentive to adapt average quality to socio-economic values
 - Protection of worst-served customers
Recommendations
Reliability (Electricity)

Criteria

<table>
<thead>
<tr>
<th>Criteria</th>
<th>CPS</th>
<th>AQIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Duration | *initially:* maximum duration per interruption
later: several duration levels | CAIDI (average restoration time) |
| Frequency | *initially:* number of long interruptions per affected customer
later: more complex frequency function | SAIFI (average interruption frequency per connected customer) |
| **Cause** | | |
| notified / not notified | no differentiation | differentiation |
| origin of interruption | Network operator of respective voltage level paid by network operator, who provides connection settled among network operators | Network operator of respective voltage level |
| **Structural Differences** | | |
| Customer Groups | *initially:* no separation or mutually accepted differentiation
later: possible differentiation by size of customer based on willingness to pay | *initially:* no differentiation or mutually accepted differentiation
later: possible differentiation by size of customer based on willingness to pay |
| Voltage level | no differentiation
paid by network operator, who provides connection settled among network operators | differentiation |
| Geographical | *initially:* no
later: possible differences to reflect local conditions | *initially:* no differentiation or mutually accepted differentiation
later: as part of the efficiency assessment |
| **Special Events** | | |
| Force Majeur | included in data base, but explicitly described, excluded from calculation of criteria, no explicit definition | included in data base, but explicitly described, excluded from calculation of criteria, no explicit definition |
Recommendations
Reliability (Electricity)

- **Determination of Criteria**
 - Calculation of a company’s SAIFI and CAIDI

 \[
 SAIFI_i = SAIFI_{i}^{HV} + SAIFI_{i}^{MV} + SAIFI_{i}^{LV}
 \]

 \[
 CAIDI_i = \frac{CAIDI_{i}^{HV} \cdot SAIFI_{i}^{HV} + CAIDI_{i}^{MV} \cdot SAIFI_{i}^{MV} + CAIDI_{i}^{LV} \cdot SAIFI_{i}^{LV}}{SAIFI_{i}}
 \]

- **For small networks**
 - Averaging SAIFI – and probably CAIDI - over n years
 \[
 SAIFI_{t=0} = \frac{\sum_{t=-1}^{n} SAIFI_t}{n}
 \]

- Until averaging time is reached, a reduced financial weight might be considered (1/n)

- n needs to be determined based on a statistical analysis of the fluctuations of the number of interruptions
 - VDN-Störungsstatistik serves as a basis
Recommendations
Reliability (Electricity)

- Customer Protection System (CPS)
 - Evaluation of interruptions:
 - Socially and politically not acceptable quality level
 - Costs should be related to “price” of service
 - Criteria (proposed criteria and penalties)
 - Maximum duration of an interruption
 - 18 hours
 - €30 per interruption and interrupted customer
 - Multiple interruptions of a duration of 4 hours and more
 - 3 interruptions
 - €30 per interrupted customer
 - Tuning target levels and penalty payments for Phase II

- Settlement
 - Automatic payment by companies for exceeding maximum interruption time
 - Claims by customers for exceeding multiple interruption standard, burden of proof is with the network operators
 - Settlement procedure to be developed by network operators
 - Contracts to be modified accordingly
Recommendations Reliability (Electricity)

- Average Quality Incentive System (AQIS)

- Interactions with the cost efficiency analysis requires differentiation of
 - Optimal cost/quality ratio
 - Optimal quality level

![Graphs showing quality vs. costs and marginal costs of quality](image-url)
Recommendations
Reliability (Electricity)

- Incentive system via AQIS
 - If the x-factor is determined without consideration of quality, the formula may be written as
 \[
 Rev_{t+1} = Rev_t^{\text{cost efficiency}} + Rev_t^{\text{Quality}} \pm Z
 \]
 \[
 Rev_t^{\text{Quality}} = \text{Revenue due to quality}
 \]

- Quality is weighted average from unplanned and planned interruption
 - Proposed weighting factor planned / unplanned: 66% / 33%
Recommendations
Reliability (Electricity)

- General description of incentive system

- Quality target
 - Depends on cost/quality curve of individual network operator and customer willingness to pay
 - May vary across the country
 - Dead Band reduces impact of small changes in quality
 - Upper and Lower Caps limit the impact of quality on revenues
 - Slopes mirrors the “willingness to pay” or the quality cost function of companies
Recommendations
Reliability (Electricity)

- Option I (average quality standard)
 - Quality Target is set by average of comparable companies (definition of clusters)
 - Slope is symmetric as no further information available and follows “common sense”
 - Reduced slopes for companies with strong stochastical fluctuations
 - Cap is symmetric at 2% of revenues
 - No dead band

- Evaluation
 - Consideration of quality levels to improve efficiency targets
 - Companies of one cluster only comparable, if slope is set right
 - Slope must be harmonized with x-factor
 - Incentives to reach socio-economically justified quality level only if slope equals willingness to pay (WTP)
Recommendations
Reliability (Electricity)

- Option II (minimum quality standard)
 - Penalties, if quality is below a minimum limit
 - Minimum limit set based on the quality frequency distribution in one cluster

- Evaluation
 - Strong incentive to increase quality above minimum level
 - Incentives to reduce quality to minimum level
Recommendations
Reliability (Electricity)

- Option III (individual quality standard)
 - As Option I, but individual quality standard are set based on the efficiency analysis

- Evaluation
 - Individual quality targets set off the shortcomings of the cost efficiency analysis
 - No clustering required
 - Incentives to reach socio-economically justified quality level only if slope equals to willingness to pay (WTP)
Recommendations
Reliability (Electricity)

- Implementation Scenarios (General Overview)

- Service Quality and Reliability: Reporting of Quality Data and Publication
- Service Quality: GS and Penalties
- Reliability: GS and Penalties
- Reliability: Modified GS and Penalties
- Reliability-AQIS: Select Option and choose financial consequences
- Reliability-AQIS: Integrated Cost and Quality Control
- Reliability: Simplified AQIS
Recommendations
Reliability (Gas)

- Measure Quality Criteria
 - SAIFI
 - CAIDI
 - Leakages?
- Same data as electricity, but explicit description of any safety-related interruption time
- Development of quality regulation management scheme requires time
 - CAIDI depends partly on strong safety requirements
- Proposed Guaranteed Standard for long supply interruptions
 - 18 hour target level, €30 penalty payment, with exceptions for safety-related time
Recommendations Service Quality

- Service Quality targets may be set based on international experience
- Targets should be set to protect worst served customers
- Targets are independent of structural differences
- Penalties should be paid automatically
- Service standards 1 to 5 are for gas and electricity, standards 6 and 7 are for electricity only
- Proposed Standards:

<table>
<thead>
<tr>
<th>Guaranteed Standard</th>
<th>Target Performance Level</th>
<th>Penalty Payment</th>
<th>Automatic Payment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Providing cost estimate for works</td>
<td>20 working days</td>
<td>€10</td>
<td>Yes</td>
</tr>
<tr>
<td>2 Execution of works</td>
<td>15 working days</td>
<td>€30</td>
<td>Yes</td>
</tr>
<tr>
<td>3 Connection of new supply</td>
<td>8 working days</td>
<td>€25</td>
<td>Yes</td>
</tr>
<tr>
<td>4 Reconnection following non-payment</td>
<td>1 working day</td>
<td>€40</td>
<td>Yes</td>
</tr>
<tr>
<td>5 Timed appointments</td>
<td>Morning or afternoon</td>
<td>€30</td>
<td>Yes</td>
</tr>
<tr>
<td>6 Responding to supplier's fuse failure</td>
<td>5 hours</td>
<td>€25</td>
<td>Yes</td>
</tr>
<tr>
<td>7 Resolving* metering or voltage problems</td>
<td>10 working days</td>
<td>€30</td>
<td>Yes</td>
</tr>
</tbody>
</table>

*resolving = correction of problem or preparation of detailed action plan
Recommendations
Safety and Product Quality

- Current rules are adequate

- The role of the energy regulators should be clarified
 - Energy regulators should have a formal role in initiating and approving changes to the existing rules
 - Formal procedures required to ensure that safety issues are appropriately considered in the price control mechanism

- No need to set up guaranteed standards for voltage quality, regulated by customer complaints

- As a result of the customer survey, BNetzA may consider to require additional monitoring of voltage quality in electricity networks
Recommendations
Reporting and Quality Management System

- Quality criteria should be reported and published
 - Application of customer pressure through publication of information
 - Application of investor pressure through publication of data
 - Application of peer (competitive) pressure by publication of data and benchmarking

- Companies should be required or encouraged to set up a Quality Management System
 - Data
 - Unambiguous definition and format of quality indicators
 - Clear description of the data collection and registration process
 - Quality of Supply
 - Setting targets for the quality indicators
 - Procedure to estimate the future demand for network capacity and quality
 - Procedure for estimating the development of network quality
 - Contents and procedures for setting up investment and maintenance plans
 - Requirements for an emergency action plan
 - Responsibilities for maintaining an adequate asset register

- The role of regulatory authorities in defining the requirements for such a QMS needs to be determined
Summary

- Quality in electricity and gas is divided into
 - Safety
 - Reliability
 - Product quality
 - Service quality

- “Safety” and “Product Quality” are determined by technical design, planning and operating standards
 - There is no apparent need to modify or expand today’s planning and operating rules, neither in electricity nor in gas
 - There is no apparent need to expand today's standards for the gas quality and voltage quality
 - There is a value in formalizing the role of the state agencies and BNetzA in monitoring and enforcing compliance with the norm and standards defining the product quality
Summary

- Two-leg system to regulate “Reliability” of electricity
 - No general planning and operating standards in medium and low voltage levels
 - Reliability of transmission networks require specific consideration of network characteristics
 - General Quality Regulation Mechanism required for customers of medium and low voltage networks
 - Regulation System should be stable and clearly defined, as it must provide long-term incentives
 - Customer Protection System (CPS)
 - Maximum interruption duration and maximum interruption frequency
 - Average Quality Incentive System (AQIS)
 - Based in SAIDI and CAIFI
 - Socio-economically justified quality level requires to determine customer’s willingness to pay
 - Quality data can be used immediately, price depend on network size

- Deferred system to regulated “Reliability” of gas
 - BNetzA should start to measure reliability criteria for gas networks
 - Customer protection System (CPS)
 - Maximum interruption duration with special consideration of gas safety
 - Consider a AQIS only as more information about the reliability data emerges
Summary

- Introduce a guaranteed standards for “Service Quality”, even if an initial customer survey has not been undertaken
 - First recommendations for the GS and the respective penalty payments have been made and need to be discussed and modified according to the reactions of the network operators
- There is a value in requiring network companies to operate a Quality Management System, both for ensuring that data is delivered in adequate quality as well as in ensuring the quality is considered appropriately in the planning and operating decisions
 - Today’s TSM for gas and electricity need to be reviewed to check if they comply with these requirements
 - It is important to formalize the role of the regulatory agencies in initializing and approving changes to the current rules and in monitoring compliance
- There is a value in conducting regular customer survey’s in order to gain insight in the customer needs
 - Initial customer survey in order to understand the customer’s understanding of regulation, his rights and his needs for modifications
 - Regular survey’s to better understand his willingness to pay, particularly for quality
- All proposed data are subject to a careful review with today’s practice in Germany
Thank you for your attention!

Dr. Brian Wharmby; Dr. Jens Büchner
E-Bridge Consulting GmbH
www.e-bridge.com
Tel: +49 228 90 90 6-0
Email: info@e-bridge.com